用語言對(duì)齊多模態(tài)信息,北大騰訊等提出LanguageBind,刷新多個(gè)榜單
北京大學(xué)與騰訊等機(jī)構(gòu)的研究者們提出了多模態(tài)對(duì)齊框架 ——LanguageBind。該框架在視頻、音頻、文本、深度圖和熱圖像等五種不同模態(tài)的下游任務(wù)中取得了卓越的性能,刷榜多項(xiàng)評(píng)估榜單,這標(biāo)志著多模態(tài)學(xué)習(xí)領(lǐng)域向著「大一統(tǒng)」理念邁進(jìn)了重要一步。在現(xiàn)代社會(huì),信息傳遞和交流不再局限于單一模態(tài)。我們生活在一個(gè)多模態(tài)的世界里,聲音、視頻、文字和深度圖等模態(tài)信息相互交織,共同構(gòu)成了我們豐富的感知體驗(yàn)。這種多模態(tài)的信息交互不僅存在于人類社會(huì)的溝通中,同樣也是機(jī)器理解世界所必須面對(duì)的挑戰(zhàn)。如何讓機(jī)器像人類一樣理解和處理這種多模態(tài)的數(shù)據(jù),成為了人工智能領(lǐng)域研究的前沿問題。在過去的十年里,隨著互聯(lián)網(wǎng)和智能設(shè)備的普及,視頻內(nèi)容的數(shù)量呈爆炸式增長。視頻平臺(tái)如 YouTube、TikTok 和 Bilibili 等匯聚了億萬用戶上傳和分享的視頻內(nèi)容,涵蓋了娛樂、教育、新聞報(bào)道、個(gè)人日志等各個(gè)方面。如此龐大的視頻數(shù)據(jù)量為人類提供了前所未有的信息和知識(shí)。為了解決這些視頻理解任務(wù),人們采用了視頻 - 語言(VL)預(yù)訓(xùn)練方法,將計(jì)算機(jī)視覺和自然語言處理結(jié)合起來,這些模型能夠捕捉視頻語義并解決下游任務(wù)。然而,目前的 VL 預(yù)訓(xùn)練方法通常僅適用于視覺和語言模態(tài),而現(xiàn)實(shí)世界中的應(yīng)用場(chǎng)景往往包含更多的模態(tài)信息,如深度圖、熱圖像等。如何整合和分析不同模態(tài)的信息,并且能夠在多個(gè)模態(tài)之間建立準(zhǔn)確的語義對(duì)應(yīng)關(guān)系,成為了多模態(tài)領(lǐng)域的一個(gè)新的挑戰(zhàn)。為了應(yīng)對(duì)這一難題,北大與騰訊的研究人員提出了一種新穎的多模態(tài)對(duì)齊框架 ——LanguageBind。與以往依賴圖像作為主導(dǎo)模態(tài)的方法不同,LanguageBind 采用語言作為多模態(tài)信息對(duì)齊的紐帶。
Tags:
相關(guān)推薦
- 免責(zé)聲明
- 本文所包含的觀點(diǎn)僅代表作者個(gè)人看法,不代表新火種的觀點(diǎn)。在新火種上獲取的所有信息均不應(yīng)被視為投資建議。新火種對(duì)本文可能提及或鏈接的任何項(xiàng)目不表示認(rèn)可。 交易和投資涉及高風(fēng)險(xiǎn),讀者在采取與本文內(nèi)容相關(guān)的任何行動(dòng)之前,請(qǐng)務(wù)必進(jìn)行充分的盡職調(diào)查。最終的決策應(yīng)該基于您自己的獨(dú)立判斷。新火種不對(duì)因依賴本文觀點(diǎn)而產(chǎn)生的任何金錢損失負(fù)任何責(zé)任。